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The first and second homogeneous strain derivatives of the Lorentz-factor dipole-tensor lattice sum are 
expressed in terms of wave-vector derivatives of modulated higher multipole-tensor sums. Such deriva- 
tives can be calculated rapidly by the Ewald method, for which computationally convenient expressions 
are given. The first strain derivatives are highly symmetrical, but the symmetry of the second derivatives 
is lower and more complicated. The method is illustrated by calculations for anthracene and tetragonal 
hydrogen cyanide; it appears to be superior to more direct methods of calculation. 

Introduction 

Strain produces both quantitative and qualitative 
changes in crystal properties. For example, an isotropic 
pressure will change the positions of lines in a crystal 
spectrum, while stresses which lower the crystal sym- 
metry may lift degeneracies and so change the number 
of spectral lines. Under the usual experimental condi- 
tion of constant stress, changes of temperature also 
produce strains which may dominate the consequent 
change in some crystal properties. For properties 
dependent on lattice multipole sums, quantitative 
interpretation of these useful and important strain 
effects depends on a knowledge of the dependence of 
multipole sums on strain. 

In part I of this series (Cummins, Dunmur, Munn & 
Newham, 1976) we discussed methods for calculating 
lattice multipole sums. Such methods may of course 
be used to calculate strain derivatives from multipole 
sums in different strained configurations, but such a 
procedure has marked disadvantages. One is that large 
strains may be required in order to produce significant 
changes in a multipole sum. Another disadvantage 
is that multipole sums are conveniently calculated 
directly from crystallographic data, whereas strains are 
usually specified by their Cartesian components, so 
that strains in the two systems have to be related 
separately. Finally, to obtain some strain derivatives 
it is necessary to treat lattices of lower symmetry than 
the equilibrium symmetry. 

In the present paper we show how the Ewald method 
for calculating lattice multipole sums can be used to 
obtain strain derivatives without the above disadvant- 
ages. We derive expressions for the first and second 
derivatives of the Lorentz-factor dipole tensor sum 
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(Dunmur, 1972) with respect to homogeneous strain. 
These derivatives, like the Lorentz factor itself, are 
only slowly convergent when summed over the direct 
lattice, but can be expressed in terms of multipole 
sums to which the rapid Ewald method is applicable. 
We illustrate the use of these expressions by numerical 
calculations for tetragonal hydrogen cyanide and for 
anthracene. 

Method: the first and second homogeneous 
strain derivatives 

We consider a lattice of points specified by vectors 
r(l, k) where l denotes the unit cell and k the sublattice. 
For dipoles of amplitude p(k) modulated in space 
by a wave of wave vector y, the field at a point on 
sublattice k due to the dipoles on sublattice k' is 

F~(kk' ;y)=(1/4rCeo) ~ T~B[r(l, kk')]p,(k' ) 
l 

x exp 2zHy. r ( l ,k ' ) ,  (1) 

where T~(r) is the dipole tensor 32r-1/3r~SrB, and 
r(l, kk') is the distance between a point on sublattice 
k' in cell l and one on sublattice k in the origin cell, 
given by r( l, k')-r(O, k ). The field F is irregular as 
y--~ O, and so it is convenient to define a new tensor, 
the Lorentz-factor tensor, as 

L,,(kk';y)=(v/470 ~ T,,[r(l, kk')] 
l 

× exp 2rciy. r(l, kk ')+y,y, / lYl 2 . (2) 

The second term in this equation cancels the irregular 
part of the dipole lattice sum in equation (1) as y - +  0, 
making L a regular function of y. (The definition of 
!_ includes the unit cell volume v to make L dimension- 
less.) By the Ewald method (Born & Huang, 1954) 
the irregularity in the dipole lattice sum may be shown 
to arise from the contribution to the transformed sum 
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from the origin in reciprocal space, and to be propor- 
tional to the macroscopic field in the crystal. The 
field F(kk';y) can then be written as 

F~(kk';y) =exp 2zciy. r(0,k)[E~ 

+ L=e(kk';y)pe(k')/eoV], (3) 

where E= is the amplitude of the macroscopic field. 
Here the leading exponential factor occurs because 
equation (2) is chosen to define l (kk ' ;y )  as symmetric 
in k and k', and independent of the choice of origin. 
We shall be concerned principally with the limit y --~ 0. 

Under a static homogeneous deformation in which 
all sublattices suffer the same displacements, a lattice 
vector r in the unstrained lattice is transformed into 
a vector r' given by 

r'=(I + u).  r,  (4) 

where the components of u are called displacement 
gradients. The dependence of the Lorentz-factor tensor 
on strain may be described by the tensor 

U,e, r6(kk' ; y)=SL=e(kk' ; y)/Sur6 , (5) 

where the derivative is evaluated for the unstrained 
lattice, i.e. for u=0 .  Since L=e is a regular function 
of y in any lattice, U=a,r~ is also a regular function of 
y. Note that although the macroscopic field is strain 
dependent, the factor v introduced in the definition 
of L~a cancels out this strain dependence in the second 
term on the right-hand side of equation (2). All the 
strain dependence originates in the first term, whose 
strain derivatives must therefore be regular functions 
of y. 

Substitution of equation (4) into equation (2) 
followed by differentiation with respect to ur6 yields 
in the limit u -+ 0 

U=a.~a(kk';y) =(v/4zc) ~ exp 2z~iy. r(l, kk') 
l 

× {T=~[r(l, kk')]8 In v/Su~ 
+ 2zciT=a[r(l, kk')]yrr~(l, kk')  
+ T=e~[r(l, kk')]r~(l, kk ' ) } .  (6) 

Here the first derivative of lnv is just ~ (see Appendix). 
The second and third terms on the right-hand side 
of equation (6) involve lattice sums of a multipole 
tensor multiplied by the lattice vector. Such sums 
cannot be evaluated by the Ewald method directly, 
but can be obtained indirectly as wave vector deriva- 
tives of the ordinary multipole lattice sums. If we 
define 

S=a. . . (kk'  ;y)= (v/4zc) ~ T=a. . .[r(l, kk')] 
1 

×exp 2rciy. r(l, kk ' ) ,  (7) 

and use V~ for 8/Oy~, then we can express equation 
(6) as 

U,,B, .jn(kk' ; y) = S~e(kk' ; y)O~a + yrV~S,e(kk' ; y ) 
+(1/2zd)V~S,a~(kk' ;y) . (8) 

The sums S~ . . .  can now be evaluated by the Ewald 
method as usual. 

In the limit as y --+ 0 each of the terms on the right- 
hand side of equation (8) has a non-regular part, 
although these must cancel since the U tensor is 
regular in this limit. In the Ewald method, the non- 
regular term in S=e arises from a term proportional to 

f=n(y)=(y,y~/ly[ 2) exp ( -  zcZlYl2/C 2) (9) 

(where C governs the division into direct and reciprocal 
lattice sums), while that in S=a~ arises from a term 
having the same proportionality to -2zciy~f,e(y). To- 
gether, the non-regular parts of equation (8) are thus 
proportional to 

(&~n + y,~Vn - V~y~)f,a(y), 

which is zero by the operator identity 

V,y~-yrV,  =&ra . (10) 

Omitting the non-regular parts from equation (7) 
leaves in the limit y -+ 0 

U=B, .e~(kk') = L~a(kk')6~ 

+(1/2rci)VoS~(kk';  Y)I~-~ o (11) 

where the prime on the quadrupole sum S=B ~ indicates 
that the first term in the Ewald sum over the recip- 
rocal lattice is to be omitted. The Lorentz-factor 
tensor L=~ is just the regular part of S~ e, and enters 
U=B.~o through the strain derivative of the volume in 
equation (2). The last term in equation (11) can be 
written as 

(1/2rOVfl,,Br(kk'; Y)Iy--, 0 

where in a form suitable for computation 

J=ar(kk' ; y )= n°B~(kk ') sin 2Q.  Rkk,(0) 

+ ~ '  {H=a~[Rkk,(l)] sin 2 Q .  Rkk,(l) 
l 

+ G=a~[Q(I) + Q] cos 2Q(l) .  Rk,,(0)}. 
(12) 

The quantities in this equation are defined in Part I 
(Cummins et al., 1976), except for the reduced wave 
vector Q = ]zl/2vZ/3y. 

The matrix u is not symmetric, and does not in 
general describe a pure strain. An infinitesimal pure 
strain is however described by the symmetric part of u : 

e=½(u+u), (13) 

where the superposed tilde denotes the transpose. The 
corresponding strain derivative is 

0~,  ro(kk') = c3 L~a(kk')/Se~o (14) 

=}[U~,a,~(kk')+ U=a.~(kk')] . (15) 

This quantity is symmetric in cc and fl, from the sym- 
metry of T~ e, and in 7 and 6 from the definition (15). 
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It may also be shown to be symmetric under inter- 
change of ~fl with ~,~, by writing a typical term in the 
sum as 

T ~  + ½( T~a~r~ + T ~ r ~ )  

and using the expressions for T~a and T~a~ in terms of 
the components r~ etc. Hence U~a. r~ has the symmetry 
of the second-order elastic constants. The number of 
independent components O~a. r~ is reduced because the 
trace L~ is unity for any strain, so that 

0 , , . ~ = 0  . (16) 

The Lorentz-factor tensor is also unchanged for uni- 
form strains which preserve the unit-cell angles and 
axial ratios. Such strains correspond to e ~ = e ~ ,  
whence 

O ,a . r ,=0 .  (17) 

However, because of the symmetry of 0,~. ~ to inter- 
change of pairs of suffixes, the condition (17) is 
equivalent to (16). These conditions provide useful 
checks on calculations because they are satisfied only 
to the extent that the summation in equation (12) has 
converged. 

Calculation of the second strain derivative of L,a(kk ' )  
proceeds similarly to that of the first. Defining 

V~, r~, ~(kk '  ; y) = 32L~(kk '  ;y) /3u~u~¢ , (18) 

we obtain from equations (2) and (4) 

V,B ' ~. ~(kk ' )  = U~a, r~(kk')c~ + U~a. ~ ( k k ' ) c ~  

- L ~ ( k k ' )  (~c5~ + c~(5~3 

-(1/4nE)VeV~S'~B~,( k k '  ;Y)l,-~0, (19) 

where the limits u->-0 followed by y - +  0 have been 
taken. The derivation uses the result 

(1/v)a2v/Ou=aOu,~ = c~=ocS,n - 6=~c5B, (20) 

(see Appendix). As before, individual terms have non- 
regular parts as y--> 0 which must cancel. They are 
proportional to 

(V~Vcy~y~ - y~VaVcy~ - y~V6Vcy~ + y~y~V~V~ 

which can be shown to be zero by repeated use of 
equation (10). In a form suitable for computation 

S~o~(kk'  ;y) = H°o~(kk  ') cos 2 Q .  Rkk'(0) 

+ ~ '  {H,,~tRkk,(l)] COS 2Q.  Rkk,(l) 
l 

+ G, ov~[Q(I) + Q] cos 2Q(l ) .  Rkk'(0)} • 
(21) 

It is again preferable to use the derivative 17,~. ~, ~ 
which is symmetrized with respect to interchange of 
), with ~ or e with (. This quantity is also symmetric 
with respect to interchange of ~,fi with e(, but not in 

general with respect to interchange of ~fl with 9,6 or 
e(. From the invariance of L,, under strain comes the 
condition 

I7~, ~. ~ = 0 ,  (22) 

and from the invariance of L,a under a uniform strain 
comes the condition 

17,o.r~. ~ = 0 .  (23) 

These conditions provide two distinct sets of checks 
on calculations. 

Numerical results 

We have calculated the first and second strain deriva- 
tives for tetragonal hydrogen cyanide and anthracene. 
The results for hydrogen cyanide have been used to 
calculate the static-lattice contributions to the piezo- 
electric coefficients and the elastic constants (Munn & 
Newham, 1976b). The results for anthracene have been 
used to calculate the strain dependence of the effective 
molecular polarizability (Dunmur & Munn, un- 
published results), and can be compared with exciton 
calculations in strained anthracene crystals (Schipper, 
1974). 

Our results for the first derivatives are shown in 
Table 1, which omits components which are zero by 
symmetry for both crystals. The differentiation with 
respect to y converges quite rapidly; for y=0.0001,  
corresponding to about 0.1% of the reciprocal unit 
cell edge, all 0~a, v6 for hydrogen cyanide have con- 
verged to the fifth decimal place. The results have been 
checked against derivatives obtained from calcula- 
tions of L~ 8 for different structures near equilibrium. 
Convergence commensurate with that described above 
is obtained for 0.05% changes in the unit cell edges on 
either side of the equilibrium value. For anthracene 
the comparison entails expressing changes in the unit 
cell parameters in terms of the Cartesian components 
of strain (Newham, 1975; Schipper, 1974). Agreement 
within 0.01% is readily obtainable. The results in 
Table 1 also satisfy the condition (16) to 1 part in l05. 

Table 1. First strain derivatives O,B. ~o(kk') referred 
to crystal axes (taken as abe' f o r  anthracene) 

Hydrogen Anthracene 
~fl, y~ cyanide 11 12 
xx, xx  - 0.0164 - 0-9976 0-0877 
xx, yy - 0.0338 0.8507 - 1.3343 
xx, zz 0.0502 0.1469 1-2467 
xx, xz 0 0.0922 - 0.0910 
yy, yy -0.0164 - 1.6843 0.9936 
yy, zz 0.0502 0.8336 0.3407 
yy, xz 0 0.0018 0.0018 
zz, zz - 0-1004 - 0"9805 - 1 "5874 
zz, xz 0 - 0"0940 0"0892 
xz, xz - 0"2842 0"0634 0"9180 
yz, yz - 0"2842 0-4101 0-4616 
yz, xy 0 - 0"0063 0"0096 
xy, xy -0"3650 0"3638 -2-1321 
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The strain derivatives of the L~a for hydrogen 
cyanide are mostly rather small. As noted elsewhere 
(Munn & Newham, 1976a), this feature arises from a 
cancellation between contributions from points at the ~,o,e~ kk" xx 
corners of the conventional unit cell and those from 11 1.3906 Xx,  XX 
points at the body centres. For example, in Ux~.xx 12 -- 3-4968 
these contributions are respectively -0.4978 and xx, yy 11 0.6386 
+ 0.4814. 12 3.2994 

The results for anthracene may be compared with xx, zz 11 -1.0316 12 0-1098 
calculations of the strain dependence of dipole sums xx, xz 11 0.3796 
in anthracene, used in exciton theory (Schipper, 1974). 12 - 0.3802 
For this comparison it is necessary to change the yy, yy 11 -2.3392 

12 -0"6304  
Lorentz-factor tensor into the plane-wise dipole sum y y ,  z z  11 0"8499 
(Philpott, 1973) as described in Part I (Cummins et 12 -1.3346 
al., 1976). The relation between the plane-wise dipole y y ,  x z  11 0"0057 
sum and the Lorentz-factor tensor is: 12 0.0057 

zz ,  z z  11 0"0349 
12 -0"0218  

zz ,  x z  11 - 0-4775 
12 0"4652 

x z ,  x z  11 -0"4570  
12 - 1.8096 

I~B(kk')=(K/v)[L=a(kk')-n=na] , (24) 

where K is a unit conversion factor and n is the unit 
normal to the planes used in the sum. For strains 
which do not change the direction of this normal, we 
obtain 

3 I ~ ( k k ' ) l a u ~  = (K/v)  U~,t~, ~.o(kk')-/~.a(kk')fi~,,~ , (25) 
where the last term comes from the strain dependence 
of 1/v in equation (24). After converting our values for 
equation (25) to give energies of interaction of dipoles 
along the principal axes of molecules on sublattices 
k and k', we obtain results which agree with Schipper's 
(1974) when allowance is made for his use of deriva- 
tives with respect to lattice parameter and for minor 
differences in the structural data he uses (Schipper, 
communication, 1975). Schipper remarks that the de- 
rivative sums are relatively lengthy to compute, but 
by the present method we find that the computation 
time scarcely exceeds that for the dipole sums them- 
selves. 

The independent non-zero second strain derivatives 
for tetragonal hydrogen cyanide are shown in Table 2; 

Table 2. Second strain derivatives ~'=B. ~, ~ f o r  
tetragonal hydrogen cyanide 

ya, e~ x x  z z  x y  x z  

x x ,  x x  0"6667 -0 -2969  0 0 
x x ,  y y  -0 .4038  0.8075 0 0 
x x ,  z z  -0"2466  -0"5609  0 0 
x x ,  x y  0 0 -0"1962  0 
x x ,  x z  0 0 0 --0"1198 
y y ,  y y  -0"3699  -0"2969  0 0 
y y ,  z z  0"8075 -0"5609  0 0 
y y ,  x y  0 0 -0"1962  0 
y y ,  x z  0 0 0 0"7994 
zz ,  z z  -0"6112  1"2223 0 0 
zz ,  x y  0 0 0'7573 0 
zz ,  x z  0 0 0 -0"3954  
x y ,  x y  -0"3661 0'7322 0 0 
x y ,  y z  0 0 0 1"0115 
x z ,  x z  -0"2687 -0 -5266  0 0 
x z ,  y z  0 0 1"0327 0 
y z ,  y z  0"7953 -0"5266  0 0 

Table 3. Second strain derivatives V',a, ~, ~(kk ' )  
referred to crystal abe" axes  f o r  anthracene 

y y  z z  x z  

--0.2121 -- 1-1785 0"3254 
4"6337 -- 1-1369 --0-3269 

--1"4884 0"8499 0-0056 
-- 1"9647 -- 1.3346 0-0056 

0"8499 0"1818 --0-4233 
-- 1"3346 1.2249 0"4122 

0.0048 --0-3844 -- 0"6605 
0"0048 0-3755 -- 1"4840 
4"7601 --2"4210 0.0097 
0"0760 0"5543 0"0096 

--1"5874 0-7375 --0-0170 
0"8951 0"4396 --0-0071 
0"0114 --0"0171 0.0139 
0"0114 --0"0171 --0"8434 

--0"0961 0"0612 0"5343 
0"0989 --0"0770 --0"4844 

--0"0179 0"4954 0.6078 
--0"0179 --0-4477 1.3872 
--0.4134 0-8703 --0.4219 
--0.5894 2"3990 0"4135 

second strain derivatives for anthracene are shown in 
Table 3, where for brevity only symmetry-preserving 
strains have been included. Adequate convergence was 
again obtained with y=0.0001, yielding results which 
satisfy the conditions (22) and (23) to about 2 parts 
in l0 s . Some components were also checked by cal- 
culating the L~D for different structures, when agree- 
ment to better than 0.01% was obtained. This method 
is much more tedious for second derivatives because 
several structures must be treated for each derivative, 
and for anthracene the transformation of strains is 
also more complicated. 

Examination of Tables 2 and 3 shows that although 
17p. re.,~ is not in general symmetric under interchange 
of ~fl with y6 or e~, it may be so for certain values of 
the subscripts. For example, lYxx.yy.== IY=.x~.yy and 
17xx.m== 17,,~,xx.yy. These symmetries can be verified 
by writing a typical term in the sum as 

+ ¼[T=ar,rar c + T~aa~rrr¢ 

+ T=B~rar~ + T=aa¢rrr~] 

and using the expressions for T,o, T,a~ and T,a~o in 
terms of the components r, etc. However, no compact 
general statement can be made about such symmetries. 

Conclusions 

The expressions derived here permit the first and se- 
cond strain derivatives of Lorentz-factor tensors to 
be calculated using the Ewald method, with its atten- 
dant advantage of speed of convergence. Only the 
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equilibrium lattice geometry has to be treated, and 
Cartesian components of strain are used directly. 
Useful checks on the results have also been derived. 

The numerical calculations confirm that the method 
is more convenient and more rapidly convergent than 
the obvious direct methods. 

The work described here should facilitate routine 
calculation of strain derivatives of dipole sums. This 
in turn will facilitate work on piezoelectric and elastic 
constants, lattice dynamics, and the strain dependence 
of effective polarizabilities and exciton energies in 
molecular crystals. 

APPENDIX 
Strain derivatives of the volume 

The volume v' in a strained configuration can be 
related to the volume v in the unstrained reference 
configuration by 

v ' = v  det ( l + u ) ,  (A1) 

which can be written in terms of the components x~ B 
o f l + u  as 

v ' = ~ w ~  ~ x ~ x  ~ x ~  , (,42) 

where e~ay is the alternating tensor (Jeffreys, 1963). 
Since 3/~ua~, equals 3/3x~., we obtain 

Ov'/3u~, = ½ve~a~e,~X~oX~ , (A 3) 

where dummy indices have been relabelled after dif- 
ferentiation. In the reference configuration where x~a = 
fi~a we obtain 

3 In v/c~u~, = ½e~a~eua ~ = ~5~u (A4) 

where the last equality is given by Jeffreys (1963). 

Differentiating equation (A3) a second time, we 
obtain 

2 t 
v / , g u ~ . , ~ u v , ,  = v~ ~v~ , , ,<~x~ . (A5) 

In the reference configuration this yields 

(1/v)32v/~uau3u~,~ = e xvre~,,<y ( A 6) 

= fi~ufiv~ - 3~,~6~ , (A7) 

where again the last equality is given by Jeffreys (1963). 
For completeness, we note that the third derivative 

is 

(1/v)~av/~u~.~u~,~3u~,, = e ~ ~e~,,~,, ( A 8) 

+ (~.,d~ u -  d~.ud~,)d,~. (A9) 

These results are readily verified by expansion of 
det ( l+u)  in terms of u~, u~2, etc. 
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